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SUMMARY

Observations from different disciplines have shown that our planet
is highly heterogeneous at multiple scale lengths. Still, many seismo-
logical Earth models tend not to include any small-scale heterogene-
ity or lateral velocity variations, which can affect measurements and
predictions based on these homogeneous models. In this study, we de-
scribe the lithospheric small-scale isotropic heterogeneity structure in
terms of the intrinsic, diffusion and scattering quality factors, as well
as an autocorrelation function, associated with a characteristic scale
length (a) and root mean square (RMS) fractional velocity fluctua-
tions (ε). To obtain this characterization, we combined a single-layer
and a multi-layer energy flux models with a new Bayesian inference al-
gorithm. Our synthetic tests show that this technique can successfully
retrieve the input parameter values for 1- or 2-layer models and that
our Bayesian algorithm can resolve whether the data can be fitted by
a single set of parameters or a range of models is required instead,
even for very complex posterior probability distributions. We applied
this technique to three seismic arrays in Australia: Alice Springs ar-
ray (ASAR), Warramunga Array (WRA) and Pilbara Seismic Array
(PSAR). Our single-layer model results suggest intrinsic and diffusion
attenuation are strongest for ASAR, while scattering and total atten-
uation are similarly strong for ASAR and WRA. All quality factors
take higher values for PSAR than for the other two arrays, implying
that the structure beneath this array is less attenuating and hetero-
geneous than for ASAR or WRA. The multi-layer model results show
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the crust is more heterogeneous than the lithospheric mantle for all
arrays. Crustal correlation lengths and RMS velocity fluctuations for
these arrays range from ∼0.2 – 1.5 km and ∼2.3 – 3.9 % respectively.
Parameter values for the upper mantle are not unique, with combina-
tions of low values of the parameters (a <2 km and ε <∼2.5 %) being
as likely as those with high correlation length and velocity variations
(a > 5 km and ε >∼ 2.5% respectively). We attribute the similarities
in the attenuation and heterogeneity structure beneath ASAR and
WRA to their location on the proterozoic North Australian Craton,
as opposed to PSAR, which lies on the archaean West Australian Cra-
ton. Differences in the small-scale structure beneath ASAR and WRA
can be ascribed to the different tectonic histories of these two regions
of the same craton. Overall, our results highlight the suitability of the
combination of an energy flux model and a Bayesian inference algo-
rithm for future scattering and small-scale heterogeneity studies, since
our approach allows us to obtain and compare the different quality fac-
tors, while also giving us detailed information about the trade-offs and
uncertainties in the determination of the scattering parameters.

Keywords: Structure of the Earth, Australia, statistical methods, coda waves,
seismic attenuation, wave scattering and diffraction.
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1 INTRODUCTION1

The Earth is heterogeneous on a variety of scales, ranging from the grain scale2

to scales of hundreds of kilometers. This heterogeneity is evident in data from3

geo-disciplines with varying sensitivity to different scales, such as geochemistry,4

mineralogy or seismology (e.g. Wu and Aki, 1988). Due to the seismic wave-5

lengths, most seismological Earth models are laterally homogeneous or smoothly6

varying, with a lack of small-scale heterogeneity (e.g. Helmberger, 1968; Dziewon-7

ski and Anderson, 1981; Kennett and Engdahl, 1991; Randall, 1994). This limits8

our understanding of high-frequency seismic wave propagation and challenges in9

seismic imaging of small-scale heterogeneities remain.10

Many seismic studies published before the 1970s were based on laterally ho-11

mogeneous Earth models (e.g. Alexander and Phinney, 1966) which were able12

to explain the propagation of long period signals, but failed to explain high fre-13

quency seismograms. Aki (1969) showed that the power spectra of coda waves for14

a given station are independent of epicentral distance and earthquake magnitude.15

He proposed that codas were caused by backscattered energy from discrete het-16

erogeneities randomly distributed beneath the stations. The presence and shape17

of the coda strongly depends on the heterogeneity structure and, therefore, the18

geology beneath the station. Later studies (e.g. Aki and Chouet, 1975; Rautian19

and Khalturin, 1978) showed that the stable decay in coda wave amplitude was20

also independent of epicentral distance and source mechanism, fully supporting21

the scattering hypothesis.22

Methods to study heterogeneity and scattering within the Earth vary depend-23

ing on the type of the heterogeneity. Many seismological studies use deterministic24

methods to characterize the structure of the Earth (e.g. Christensen and Mooney,25

1995; Zelt and Barton, 1998) or to find individual scatterers and try to obtain their26
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particular characteristics and locations (e.g. Etgen et al., 2009). Marchenko imag-27

ing (e.g. Thorbecke et al., 2017; van der Neut et al., 2015) or migration techniques28

(e.g. Etgen et al., 2009) are often used in reflection seismology to study shallow29

structure and are a good example of deterministic methods. These techniques30

tend to have limited spatial resolution due to the wavelength of the studied waves31

and do not always take into account small-scale heterogeneities (on the order of32

magnitude of the wavelength or smaller), therefore failing to explain or reproduce33

the complex coda waves we see in seismograms. A different approach that par-34

tially overcomes these issues uses a stochastic description of the heterogeneity (e.g.35

Korn, 1990, 1997; Margerin, 2005; Hock et al., 2004; Ritter et al., 1998). This ap-36

proach (e.g. Frankel and Wennerberg, 1987; Shapiro and Kneib, 1993; Hock et al.,37

2004; Sato and Emoto, 2018) provides a statistical description of the structure and38

determines the integrated effect of heterogeneity on propagating seismic waves, so39

the characteristics and locations of individual scatterers are not relevant. Studies40

show the crust and lithospheric heterogeneity to be statistically complex and the41

necessity of heterogeneous Earth models that are capable of explaining not only42

the main waveforms but also coda waves (e.g. Aki, 1973; Flatté and Wu, 1988;43

Langston, 1989).44

Several methods allow us to study the propagation of seismic waves through45

heterogeneous stochastic media and characterise the scattering and attenuation46

properties of the Earth. Single-scattering perturbation theory (e.g. Aki and Chouet,47

1975; Sato, 1977, 1984) was one of the first methods designed for this purpose. It48

considers scattering to be a weak process and coda waves the superposition of49

single scattered waves generated at randomly distributed heterogeneities within50

the Earth. It often makes use of the Born approximation (e.g. Sato et al., 2012),51

a first-order perturbation condition which does not take into account the energy52
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loss from the primary waves. As a result, energy is not conserved in the scattering53

process (e.g. Aki and Chouet, 1975). Sato (2006), Sato (2007) and Emoto et al.54

(2010) later set the basis for future synthesis of vector wave envelopes studies by55

extending the Markov approximation for scalar waves and developing a series of56

algorithms to synthesize vector wave envelopes in 3–D Gaussian random elastic57

media. Recently, many studies have used Radiative Transfer Theory (RTT), a58

technique initially developed for light propagation (Chandrasekhar, 1950) which59

has been significantly improved and expanded (e.g. Margerin et al., 1998; Przybilla60

and Korn, 2008; Nakahara and Yoshimoto, 2011; Sanborn et al., 2017; Sato and61

Emoto, 2017, 2018; Hirose et al., 2019; Margerin et al., 2019) since its first appli-62

cations to seismology (e.g. Wu, 1985; Gusev and Abubakirov, 1987). In particular,63

the development and improvement of Monte Carlo simulations and analytical ap-64

proaches to solve the radiative transfer equations have made it possible to apply65

RTT to a wide variety of tectonic and geological settings (e.g. Gaebler et al.,66

2015b,a; Fielitz and Wegler, 2015; Margerin and Nolet, 2003; Hirose et al., 2019).67

Other methods to analyse coda energy and study lithospheric heterogeneity have68

been proposed and are also widely used (e.g. coda normalization method (Aki,69

1980), multiple lapse time window analysis (e.g. Fehler et al., 1992), coda wave70

interferometry (e.g. Snieder, 2006), etc). While these methods are able to charac-71

terize the heterogeneity structure of the Earth, they all use approximations or are72

computationally expensive.73

In this study, we combine two stochastic methods, the single layer modified74

Energy Flux Model (EFM, Korn, 1990) and the depth dependent Energy Flux75

Model (EFMD, Korn, 1997), with a Bayesian inversion algorithm which allows us76

to characterise small-scale lithospheric heterogeneity by fully exploring the scatter-77

ing parameter space and obtain information about the trade offs and uncertainties78



Small-scale lithospheric heterogeneity characterization 6

in the determination of the parameters. We applied these methods to a large79

dataset of teleseismic events recorded at three seismic arrays of the Australian Na-80

tional Seismic Network: Pilbara Seismic Array (PSAR), and Alice Springs Array81

(ASAR) and Warramunga Array (WRA), which are also primary seismic arrays82

from the International Monitoring System (IMS) network, the worlwide network83

built to ensure compliance with the Comprehensive Test Ban Treaty (CTBT).84
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2 METHODS85

We use the random medium approach, which considers the propagation of seis-86

mic waves through a medium with constant background velocity and density and87

random heterogeneities distributed according to a given autocorrelation function88

(ACF) and linearly related through Birch’s law (Birch, 1961). The ACF depends89

on the RMS fractional velocity fluctuations, ε, and the characteristic or correlation90

length, a, which defines the spatial variation of the heterogeneities. By obtaining91

these parameters, it is possible to obtain a statistical description of the sampled92

structure that reveals the strength of the scattering experienced by seismic waves.93

The modified Energy Flux Model (EFM) and depth-dependent Energy Flux Model94

(EFMD) can be used for both weak and strong scattering (e.g. Korn, 1990; Hock95

and Korn, 2000; Hock et al., 2004) and allow determining the best-fitting ACF of96

the heterogeneous medium. Both methods work under the assumption of planar97

wavefronts and vertical or near-vertical incidence from below on a single scattering98

layer (EFM) or stack of layers (EFMD), conditions well met by teleseismic events,99

allowing the study of the heterogeneity structure in seismically quiet regions.100

Here we present a short introduction to the EFM and EFMD. Full details101

about the methods can be found in Korn (1990), Korn (1997), Hock and Korn102

(2000) and Hock et al. (2004).103

2.1 The Modified Energy Flux Model for a single scat-104

tering layer105

When a plane wavefront enters a heterogeneous unlayered medium from below,106

part of the energy propagates with the ballistic wavefront, while part forms the107

forward scattered coda energy that arrives later at the surface and some energy108
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scatters back into the half-space. Total energy Etot is conserved in this process109

and we can write it in terms of frequency, ω, and time, t, as110

Etot(ω, t) = Ed(ω, t) + Ec(ω, t) + Ediff (ω, t), (1)

with Ed being the energy of the direct wave, Ec the energy transferred from111

the direct wave into the coda (forward scattered) and Ediff the energy diffusion112

(backscattering) from the current layer back into the half-space. The energy that is113

transferred from the incoming wavefront to the scattered coda and the backscat-114

tering to the half-space can be expressed as an energy loss for the direct wave,115

controlled by a quality factor Qs for scattering and Qdiff for diffusion. To take116

into account anelastic (intrinsic) attenuation, we use the quality factor Qi. The117

EFM assumes spatially homogeneous coda energy within the scattering layer. En-118

ergy transfer into the coda due to scattering or anelastic losses stops once the119

ballistic wave leaves the scattering layer after totally reflecting at the free surface,120

while diffusion out of the scattering layer can continue after that.121

A linear least-squares fit of the theoretical coda power spectral density allows122

us to calculate the coda decay rate, a1, and its amplitude at zero time, a0 (Korn,123

1990, 1993). The values of Qi and Qdiff at 1 Hz, Qi0 and Qd0, can be obtained124

from values of a1 at different frequencies via125

a1(ω) = −2π[Q−1d0 +Q−1i0 (ω/2π)1−α] log10 e, (2)

where α is the exponent controlling the frequency dependence of Qi (Korn, 1990).126

To determine Qdiff and Qi at different frequency bands, we then use:127

Qdiff (ω) = Qd0ω/2π (3)
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Qi(ω) = Qi0(ω/2π)α (4)

Laboratory measurements of α have shown that it probably remains below128

1 for most of the frequency range considered here (Korn, 1990, and references129

therein). Our attempts at obtaining α as a third free parameter in the least-130

squares inversion of Eq. 2 revealed a very complicated trade-off with Qi0 and131

Qd0, with high values of α corresponding to negative values of Qi0 and/or Qd0.132

Therefore, we limited α to the range of 0.0 - 0.6, in steps of 0.1, and chose the133

value that minimised the misfit to the data. The impossibility to fully invert for α134

makes it difficult to accurately calculate Qi within the EFM, but has a minor effect135

in the determination of Qdiff (Korn, 1990). For our range of source distances, Qi136

is generally much larger than Qdiff (Korn, 1990), which reduces the impact of this137

limitation of the EFM inversion.138

The coda amplitude at zero time, a0, is related to Qs through139

Qs ≈ 2IDω10−a0 , (5)

ID being the integral of the squared amplitude envelope, A2(t;ω), over the time140

window of the direct wave arrival (Hock and Korn, 2000). We can then use the141

relationships between Q−1s and the structural parameters for different types of142

ACFs obtained by Fang and Müller (1996) to determine the type of ACF that fits143

the data best, as well as a first estimation of the correlation length (a) and the RMS144

velocity fluctuations (ε) for a single scattering layer. The eight one octave-wide145

frequency bands we used in our analysis for both methods are shown in Table 1.146

Given the similarity between different ACFs within our frequency range of interest,147

and despite the possibility to determine the type of ACF of the scattering structure148

using the EFM, we decided to assume an exponential ACF for this study, since149
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Table 1: List of all frequency bands used in this study.

Frequency band A B C D E F G H
Minimum frequency (Hz) 0.5 0.75 1 1.5 2 2.5 3 3.5
Maximum frequency (Hz) 1.0 1.5 2 3 4 5 6 7

previous studies have proposed it as an appropriate ACF for teleseismic scattering150

studies (Shearer and Earle, 2004).151

Finally, we calculated the combined quality factor, Qcomb , as the combination152

of all three quality factors:153

1

Qcomb
=

1

Qdiff
+

1

Qi
+

1

Qs
(6)

Please note that Qcomb , as opposed to other quality factors, is not related154

to the energy decay of the wavefield nor it is applied to any specific part of the155

seismogram. Its only intent is to summarise the total coda attenuation and make156

it easier to compare our results from the different arrays.157

2.2 The Energy Flux Model for depth-dependent het-158

erogeneity159

Korn (1997) modified the EFM to include depth-dependent heterogeneity. In this160

model, a plane wavefront enters a stack of N heterogeneous layers from below.161

Each layer j has its own characteristic transit time δtj and scattering quality162

factor Qsj , which is calculated from the structural parameters aj and εj (Fig. 1)163

using the analytical approximation for isotropic exponential media obtained by164

Fang and Müller (1996). The stack of layers is symmetric with respect to the165

free surface, which is located at the center of the stack to take into account the166

reflection of the wavefront.167
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For a given angular frequency ωc, the normalised coda energy envelope of a168

velocity seismogram at the free surface is computed from the squared amplitude169

envelope A2(t;ωc) and is related to the energy balance within the different layers170

in the model through171

√
A2(t;ωc)

ID
=

√
2ECN

(t;ωc)

tNED(tN ;ωc)
, (7)

with ECN
(t;ωc) being the spectral coda energy density of the layer containing the172

free surface, tN the traveltime from the bottom of the stack of layers to the free173

surface and ED(t;ωc) the energy density of the direct wave at the free surface. Qs174

and Qi control the decay of the direct wave energy over time due to scattering and175

intrinsic attenuation via176

ED(tj ;ω) = ED(tj−1;ωc)e
−ω(tj−tj−1)(Q

−1
sj

+Q−1
ij

)
, (8)

where tj represents the one-way travel time through each layer. The energy balance177

within layer j (j = 1, ..., N) is represented by178

dECj

dt
=− 1

4δtj
ECj (t)H (t− tj)

− 1

4δtj
ECj (t)H (t− tj−1)

+
1

4δtj−1
ECj−1 (t)H (t− tj−1)

+
1

4δtj+1
ECj+1 (t)H (t− tj)

− ω

Qij
ECj (t)H (t− tj−1)

+
ω

Qsj
ED (t)H (t− tj−1)H (tj − t)

, (9)

where H is the Heaviside function. The first two terms of Eq. 9 describe the energy179
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Figure 1: Total energy balance for layer j, according to the EFMD. (After Korn, 1997).

flux from layer j to the layers above and below, while the next two terms describe180

the opposite flux from the neighbouring layers into layer j. The last two terms181

represent the anelastic or intrinsic energy loss and the direct wave energy input182

into the layer. In practice, for a given model m, comprising a single value of a and183

ε for each layer in the stack, ED is calculated for each time sample using Eq. 8,184

starting from the measured energy value at the free surface. Then, the system of185

linear differential equations in Eq. 9 is solved for each layer in the model. Finally,186

synthetic coda envelopes are calculated for each frequency band using Eq. 7.187

2.2.1 Bayesian inference188

We use a Bayesian approach to obtain the values of the structural parameters for189

each layer in the model (e.g. Tarantola, 2005). In this approach, the aim is not to190

obtain a best fitting model, but to test a large number of models with parameters191

drawn from a prior probability distribution p(m) (or prior) defined by our previous192
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knowledge on them. In our case, we assume we have no previous knowledge on193

the value of the parameters and use a uniform prior.194

The likelihood associated with model m, p(d|m), is the probability of observing195

our data, d, given the model parameters in m. We used the Mahalanobis distance196

Φ(m) (Mahalanobis, 1936) between d, with variance-covariance matrix C, and the197

synthetic envelopes g(m), to calculate the fit to our data:198

Φ(m) = (g(m)− d)TC−1(g(m)− d), (10)

which we then applied to the calculation of the likelihood of model m:199

p(d|m) =
1√

(2π)n|C|
exp

(
−Φ(m)

2

)
(11)

Bayes’ theorem (Bayes, 1763) allows us to calculate the corresponding sample of200

the posterior probability distribution (or posterior), that is, the probability density201

associated with model m, or p(m|d):202

p(m|d) ∝ p(d|m)p(m) (12)

We create an initial model by selecting a random value for the correlation length203

and velocity fluctuations in all layers in the (amin, amax) or (εmin, εmax) intervals,204

with amin = 0.2λmin [m], amax = 2λmax [m] (λmin and λmax being the mini-205

mum and maximum wavelengths in the layer, depending on signal frequency and206

background velocity), εmin = 4.5 · 10−3 % and εmax = 10 %. These maximum207

and minimum values were chosen considering the relevant range for detectable208

scattering while being geologically feasible (e.g Korn, 1993; Hock et al., 2004).209

We then applied the Metropolis-Hastings algorithm (Metropolis and Ulam,210
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1949; Metropolis et al., 1953; Hastings, 1970) to sample the posterior probability211

distribution and generate our ensemble of solution models. This way, at every212

time step, this Markov Chain Monte Carlo (MCMC) algorithm generates a new213

model m′ by randomly choosing one of the parameters in the previous model (m)214

and updating its value by adding a random number in the (−δa, δa) or (−δε, δε)215

interval, with δa and δε being the step size for correlation length and RMS velocity216

fluctuations respectively. In case the new value of the parameter exceeds the217

boundaries defined by (amin, amax) or (εmin, εmax), the distance ∆ to the boundary218

is calculated and the new parameter value is forced to bounce back into the valid219

parameter range by the same distance ∆. The algorithm then takes model m′ and220

uses Eqs. 9 and 7 to obtain the corresponding synthetic envelopes. In order to221

decide whether to accept or reject the new model, the algorithm uses the posterior222

probability exponent (Eq. 11), Φ(m)/2, called here the loglikelihood, L, associated223

with model m, as an estimator of the likelihood and the goodness of the fit to224

the data. Thus, if L(m)/L(m′) ≥ 1, m′ will be accepted. If L(m)/L(m′) < 1,225

however, it will only be accepted if exp(L(m) − L(m′)) ≥ q, q being a random226

number between 0 and 1. This algorithm ensures that parameter values closer227

to the true value have high likelihoods and are accepted more often than values228

further from the true value. The acceptance rate (AR) represents the percentage229

of times new parameter values were accepted through the Markov chain. There230

are several criteria defining what the value of the AR should be, most of them231

making assumptions about the properties of the target distributions (e.g. Brooks232

et al., 2011). In our case, since we do not have any a priori information about233

the posterior distributions, we aimed at AR values between 30–60 %. Finally we234

calculate the 5- to 95- percentile range (PR) for each parameter in each layer in235

the model from our ensemble of accepted models.236
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For more detailed descriptions of Bayesian inference and MCMC, we refer the237

reader to Tarantola (2005) or Brooks et al. (2011).238

2.2.2 Synthetic tests239

Previous studies have tested the validity of both the EFM and EFMD: Frankel and240

Wennerberg (1987) and Korn (1990) used a 2–D acoustic finite difference code to241

check the validity of their respective versions of the EFM; Korn (1997) and Hock242

et al. (2004) tested their approaches by obtaining synthetic seismograms from243

a fully elastic 2–D finite difference method and comparing them with synthetic244

envelopes obtained from the EFMD. Here, we tested our Bayesian inversion code245

with five different synthetic datasets, with varying number of layers and parameter246

values. Synthetic envelopes for these five models were calculated using the EFMD247

algorithm. Parameter values for each one are shown in Table 2, together with a248

summary of our synthetic tests results. In all of them, we used Pilbara Seismic249

Array (PSAR, Section 3) as a test array and obtained its velocity model and Moho250

depth from the Australian Seismological Reference Model (AuSREM, Kennett and251

Salmon, 2012; Kennett et al., 2013; Salmon et al., 2013b) and AusMoho model252

(Kennett et al., 2011) respectively, although our results should be applicable to253

all arrays. Based on the lower bound of the lithosphere-asthenosphere boundary254

(LAB) for this array (Yoshizawa and Kennett, 2015; Kennett, 2015), we set the255

bottom depth of all models to 200 km. Frequency bands used are listed in Table256

1.257

Figures 2, 3 and 4 below, and S1 and S2 in the Supplementary Material, illus-258

trate the results from our synthetic tests for Models 1 to 5 (Table 2). In order to259

test the convergence of our algorithm, we ran three independent Markov chains for260

each model, with a total of 3 million iterations (parameter combinations tested)261



Small-scale lithospheric heterogeneity characterization 16

Table 2: Summary of the synthetic model layering and our synthetic tests results.
For each model, we include the 5–95 percentile range (PR) and the acceptance rate
(AR) for each parameter, as well as the maximum loglikelihood (L) found during
the inversion.

Model
Number Layer Input model Correlation length (a) RMS velocity fluctuations (ε) Maximum
of layers number a (km) ε (%) 5 – 95 PR (km) AR (%) 5 – 95 PR (%) AR (%) L

1 1 1 5.0 5.0 4.99 – 5.05 23 4.99 – 5.00 8 -2.5

2 2
1 2.0 5.0 1.7 – 2.4

12
4.8 – 5.3

47 -0.02
2 3.0 4.0 2.8 – 3.4 3.9 – 4.1

3 2
1 1.0 7.0 1.00 – 1.01

51
6.95 – 7.02

47 -0.03
2 6.0 1.0 7 – 32 1.0 – 1.8

4 2
1 6.0 1.0 6 – 25

50
1.0 – 1.8

51 -1.3
2 1.0 7.0 0.998 – 1.002 6.998 – 7.003

5 3
1 1.0 4.0 1 – 23

52
0.1 – 4.7

31 -0.022 2.0 3.0 1 – 21 0.6 – 6.1
3 4.0 2.0 3 – 30 1.8 – 3.3

for the single layer model, 9 million for the 2-layer models, and 15 million for262

the 3-layer model. For each chain, we discarded the models corresponding to the263

burn-in phase, during which the algorithm is not efficiently sampling the posterior264

probability distribution and models are still affected by the random initialization265

of the Markov chain. In order to define the point at which the algorithm reached266

convergence and the burn-in phase ended, we first calculated the mean loglikeli-267

hood value in the second half of the chain (during which the algorithm is stable)268

and then subtracted 5% off that value. We consider the algorithm has converged269

the first time it accepts a model with loglikelihood L equal or higher than this270

value. Our threshold was defined based on the observation, in test runs of the271

EFMD, that L generally remained stable after reaching the defined threshold for272

the first time. L provides an estimation of the goodness-of-fit of the synthetic data273

to our real data and takes negative values, meaning fits improve as L gets closer274

to zero (Eq. 11). In terms of parameter values, we consider that a narrow 5–95275

percentile range (PR) points to clearly determined values of the structural param-276

eters, while wide 5–95 PRs would suggest multiple parameter values are equally277

likely and good at fitting our data.278

For Model 1, with a single layer encompassing the entire lithosphere, all three279
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chains reached stability and converged within 10000 iterations. Panels d–f in Fig.280

2 show our posterior probability density functions (PDFs) for each parameter, as281

well as the joint PDF. In both cases, the distributions are approximately Gaus-282

sian and symmetric, with the 5–95 PR being ∼ 0.06 km and ∼ 0.01% wide for283

the correlation length and RMS velocity fluctuations respectively (Table 2), which284

indicated that the range of suitable values of the parameters is very well defined.285

The algorithm slightly overestimates the correlation length and underestimates the286

RMS velocity fluctuations, with the input value of the parameter being included287

in the 5–95 PR for the latter but not for the former (Table 2, Fig. 2). However,288

the difference between the central value of the PDFs and the true value of the289

parameter is < 0.4% for both the correlation length and the RMs velocity fluc-290

tuations. Graphs on the right hand side of Fig. 2 (panels g–n) show histograms291

of the synthetic envelopes for our ensemble of accepted models for all frequency292

bands. As frequency increases, both envelope amplitudes and width of the ensem-293

ble of synthetic envelopes increase too. However, in all cases, the highest density294

of envelopes, indicated by a dark brown color, is found in a very narrow line that295

matches the input data envelopes, not only in the time window used for the fit296

(shadowed area in the plots), but also outside of it.297

Model 2 contains two layers, representing the crust and lithospheric mantle.298

Our three chains converged in less than 120000 iterations and remained stable for299

the rest of the inversion, as shown in panels a–c in Fig. 3. Panels d–i in this figure300

summarise our results. In this case, the PDFs for the parameters in both layers301

are narrow (the 5–95 PR is < 0.7 km wide at most for a and < 0.5% for ε) and302

approximately centered around the input values, even if they are not Gaussian and303

show some local maxima. The true values of the parameters lie within the 5–95304

PR in all cases, near the center of the joint PDFs, and the maximum difference305
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between the input values and the absolute maxima of the PDFs is 2%. Panels j–q306

in Fig. 3 indicate fits to the synthetic data are good, since they show again that307

the largest concentration of synthetic envelopes for all frequencies coincides with308

the input data envelopes.309

Models 3 and 4 have the same interface structure as model 2 (Table 2) and310

investigate high contrast situations in which a strong heterogeneity layer is above311

or below a layer containing weak heterogeneities respectively. Figs. S1 and S2312

summarise our results and can be found in the Supplementary Material. In both313

cases, the chains reached stability within 11000 iterations. Posterior PDFs for the314

strongly scattering layer are approximately Gaussian and narrow for both models315

3 and 4, with maxima that deviate from the input parameter values by 0.4%316

at most (Table 2). The weakly scattering layer, however, is poorly resolved for317

both models. The posterior PDFs for this layer are very similar in both cases318

and clearly non-Gaussian. They show multiple maxima that do not correspond319

to the input parameter values, which widens the 5–95 PR, especially for a. The320

RMS velocity fluctuation values seem to be constrained to the range from 0.5–321

1.9 % for both models, while the shape of the PDFs suggests any value of the322

correlation length would be equally acceptable, even if large values (> 5 km) are323

favoured. The stability of the chains, shown in panels a–c in Figs. S1 and S2,324

together with the ensemble of synthetic envelopes on panels j–q, indicate that all325

these models provide similarly good fits to the data and have similar loglikelihoods.326

This observation points to solutions being highly non-unique, and to the scattering327

parameters of the weakly heterogeneous layer not being easily recoverable for these328

high contrast cases.329

Finally, model 5 contains three layers, with boundaries corresponding to upper330

and lower crust and lithospheric mantle. Our results are shown in Figs. 4 and331
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Table 2. Chains converged in less than 130000 iterations. In all cases, PDFs332

are clearly non-Gaussian (panels d-l on Fig. 4) and have complex shapes, which333

widens the 5–95 PR and increases the range of suitable values of the parameters.334

The correlation length PDFs show clearly defined maxima near the true values of335

the parameter in all layers (the maximum distance between the maximum and the336

input parameter value being 0.35%). RMS velocity fluctuations PDFs are more337

complex and neither of them show clear maxima near the input parameter values.338

Figure S3 contains the marginal PDFs for all parameters in all layers, as well339

as the PDF for each individual parameter. It shows a strong trade-off between340

parameter values in different layers of the model, especially the two crustal layers,341

and allows us to identify two independent sets of parameters from our results (see342

Section S.1 in the Supplementary Material for details). This interaction between343

the parameters is caused by two main factors: first, the energy balance the EFMD344

is based on (Eq. 9) is strongly dependent on the layering of the model, since345

the maximum energy that can be present within a layer at any time depends on346

its thickness (i.e. energy leaks out of thinner layers faster); second, correlation347

length values have a much smaller effect on coda amplitudes, compared with RMS348

velocity fluctuations, so the algorithm uses ε to compensate the excess or lack of349

energy within a layer and match data coda amplitudes. Since panels m–t on Fig.350

4 do not show two clearly different sets of envelopes in our ensemble of synthetic351

envelopes, and given that the loglikelihood values remained stable throughout the352

three independent chains we ran for this example, we conclude that both sets of353

parameters we obtained from our inversion provide equally good fits to the data,354

even if neither of them match our input parameter values.355

Overall, our results show that our Bayesian algorithm is capable of successfully356

fitting our data and retrieving the input parameter values for our 1-layer and 2-357
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layer models. For our 3-layer model, however, the method provides good fits358

to the data but fails to obtain the correct parameter values, so we cannot trust359

results from this model for real data inversions, since we do not know what the360

scattering parameters are beforehand. Our observations illustrate the usefulness361

of the Bayesian approach we took in this study. It provides detailed information362

about the parameter space and indicates whether a single set of parameters that fits363

our data exists or a range of models can equally match the data. Any estimation364

of scattering parameters in a maximum-likelihood framework would therefore have365

led to erroneous conclusions about the physical parameters in this system, which366

we have avoided. The joint PDFs highlight the complicated relationships and367

trade-offs between the model parameters in the different settings explored here,368

which had not been observed in previous studies using the EFMD. We do not369

observe systematic overestimation of a in the EFMD, as reported by Hock et al.370

(2004). This observation might be related to the limited number of models tested371

in grid search approaches and the observed trade-offs between parameters.372
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Figure 2: Summary of the results obtained from our EFMD algorithm for synthetic model

1 from Table 2 from three separate chains, adding up to a total of 3 million iterations (pa-

rameter combinations tested). Panels a–c show the loglikelihood (or posterior probability

exponent) for each accepted model in the chain, once the burn-in phase was removed.

Panels d–f contain the posterior PDFs of the structural parameters, as well as the joint

PDF. Dotted blue lines in these plots represent the input parameter values and the shaded

area corresponds to the 5–95 percentile range (PR). Panels g–n on the right show 2D his-

tograms of the synthetic envelopes for all accepted models and frequency bands, with

color bars indicating the number of models that produced a data sample within each bin.

Vertical scale is the same in all plots. The shaded area here indicates the time window

used for the fitting and blue dotted lines are the input data.
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Figure 3: As Fig. 2 but for synthetic model 2 from Table 2 (2-layer model).
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Figure 4: As Fig. 2 but for synthetic model 5 from Table 2 (3-layer model).
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Table 3: Number of events and good quality (SNR > 5) traces for each array
and frequency band.

Number of events per frequency band
0.5–1 Hz 0.75–1.5 Hz 1–2 Hz 1.5–3 Hz 2–4 Hz 2.5–5 Hz 3–6 Hz 3.5–7 Hz

PSAR
Events 86 161 213 276 343 268 212 158
Traces 973 1899 2489 3226 3179 2965 2282 1641

WRA
Events 292 355 385 407 413 410 412 406
Traces 709 843 916 977 983 984 980 965

ASAR
Events

309 375 440 429 405 397 386 374
Traces

3 DATA SELECTION AND PROCESSING373

Our dataset consists of seismic recordings from teleseismic events from January374

1, 2012 to December 31, 2018, and with epicentral distances between 30 and 80375

degrees from the arrays, with source depths greater than 200 km and magnitudes376

from 5 to 7. These conditions ensure vertical or nearly vertical incidence angles and377

prevent near-source scattering and unwanted deep seismic phases from appearing378

in our time window of interest.379

After removing the instrument response, we calculate the signal-to-noise ratio380

(SNR) for each trace and frequency band using the peak-to-peak amplitude in two381

separate time windows: for noise, we used a 20 s long window, starting ∼ 25 s382

before the theoretical P-wave arrival (as estimated from PREM (Dziewonski and383

Anderson, 1981)), while for the signal we chose a time window starting 1 second384

before the theoretical first arrival and ending 40 seconds later. Only traces with385

signal-to-noise ratio equal to or higher than 5 were used.386

Hock et al. (2004) pointed out that the EFMD generally overestimated the387

RMS velocity fluctuations by up to 3% when using only vertical-component data388

and that a mix of 1-component and 3-component data produced unstable results,389

both of them caused by the difference in coda amplitudes between 1-component390

and 3-component data. However, the International Monitoring System arrays391
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are dominantly vertical component, with WRA having three 3-component sta-392

tions and ASAR a single 3-component central station. All PSAR stations are393

three-component. To address this issue, we tried calculating a correction factor to394

approximate 1-component to 3-component coda levels. We used several different395

approaches to obtain this correction factor, all of them based on the ratio be-396

tween every available 3-component coda envelope A(t;ωc) or normalised envelope397

(left hand side on Eq. 7) and its 1-component (vertical) counterpart. However, we398

found that these ratios varied significantly from event to event and frequency band399

to frequency band and followed complicated probability distributions, even after400

using our large datasets to calculate them. The corrected 1-component envelopes401

did not, in general, fully match the 3-component coda amplitudes using this ap-402

proach. Our tests also showed the correction factors needed for the normalised403

envelopes were different than for the unnormalised ones and that small variations404

in coda amplitudes affected the results we got from both the EFM and EFMD.405

We also used the “corrected” 1-component data in our EFM-EFMD algorithm406

and compared the results in different settings with those from our 3-component407

data for PSAR. In both cases, the distribution of the heterogeneity followed simi-408

lar patterns, but the values of the scattering parameters and the posterior PDFs409

differred. Therefore, we only analyse 3-component data in this study.410

Table 3 shows the number of events and traces used for each array and fre-411

quency band. For PSAR, we only kept events with 5 or more good quality 3-412

component traces. For WRA and ASAR, we used all available 3-component data.413

This allowed us to test this method with different station configurations, from a414

full array (PSAR) to a small group of stations (WRA) or even a single station415

(ASAR). In all cases, our large event dataset guarantees a thorough sampling of416

the structure beneath the stations and allows us to obtain robust results.417
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For each array, the data processing prior to the EFM/EFMD analysis was418

carried out as follows:419

(i) Computation of 3-component envelopes for each frequency band, station and420

event. All traces were trimmed to the time window going from tN seconds421

before to 3tN seconds after the theoretical P wave arrival (tN being the travel422

time through the lithosphere, ∼ 25 s for all arrays). These were then stacked423

by event, normalised using Eq. 7 and stacked by frequency band. Unnor-424

malised envelopes for all events were also stacked by event and frequency425

band. The variance of both normalised and unnormalised envelopes was cal-426

culated sample by sample from all individual event stacked envelopes and427

used as the uncertainty of our data.428

(ii) Estimation of Qs, Qi, Qdiff , a and ε for a single scattering layer using the429

EFM.430

(iii) Bayesian inversion for the structural parameters of each layer in each model431

type from Fig. 5 by applying the envelope modelling technique from EFMD,432

as described in Section 2.2, and using the Qi values obtained from the single433

layer EFM. The bottom depth of these models was set to 200 km in all cases434

to make it easier to compare our results from the three arrays. In order to435

speed up this process, our data were resampled to a common sampling rate436

of 10 Hz (original sampling rates were 40 Hz for PSAR and WRA and 20 Hz437

for ASAR) before applying the EFMD algorithm.438

Background lithospheric P-wave velocities (Fig. 5) and Moho depths for each439

seismic array were obtained from the Australian Seismological Reference Model440

(AuSREM, Kennett and Salmon, 2012; Salmon et al., 2013b; Kennett et al., 2013;441

Salmon et al., 2013a) and AusMoho model (Kennett et al., 2011) respectively.442
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Figure 5: Representation of the AuSREM P-wave velocity models for each seismic array

(left) and the three types of lithospheric models used in the EFMD (right). The layering

and bottom depth is the same we used in the models for our synthetic tests, with Model

types I, II and III corresponding to Models 1, 2 and 5 from Table 2 (Models 2, 3 and 4

have the same layering). Moho depths for each array were obtained from the AusMoho

model (Kennett et al., 2011).



Small-scale lithospheric heterogeneity characterization 28

4 TECTONIC SETTING443

ASAR and WRA are located on the North Australian Craton (NAC), one of the444

Proterozoic cratons in the Precambrian westernmost two-thirds of the Australian445

continent (e.g. Myers, 1990; Simons et al., 1999; Cawood and Korsch, 2008; Well-446

man, 1998) (Fig. 6). The NAC consists of late Archaean to Proterozoic cratonic447

blocks overlaid by Proterozoic and Phanerozoic orogenic belts and basins. PSAR448

is located on Archaean lithosphere part of the West Australian Craton (WAC),449

which includes both the Pilbara and Yilgarn Archaean cratons, as well as some450

Proterozoic orogens and basins (Cawood and Korsch, 2008) (Fig. 6). Present day451

tectonic activity in Australia is concentrated along the active plate boundaries in452

the north and east, with continental regions presenting only moderate seismicity453

(Fichtner et al., 2009).454

Previous studies have investigated crust and lithospheric thicknesses and struc-455

ture around the three arrays studied here. Thick crust (Lc > 40 km) with a wide456

and smooth Moho transition has generally been found in the Proterozoic shields457

of Central Australia while the Archaean regions of western Australia have thinner458

crust (Lc < 40 km) and sharper crust-upper mantle transitions (e.g. Clitheroe459

et al., 2000; Sippl, 2016; Salmon et al., 2013a; Kennett et al., 2011; Kennett and460

Saygin, 2015). This difference in crustal thickness between Archaean and Pro-461

terozoic regions seems not to fit the trend of crustal thickness increasing with age462

suggested for Australia (e.g. Clitheroe et al., 2000). It has been attributed to post463

Archaean tectonic activity underplating material at the base of the crust in these464

regions, as opposed to the Archaean cratons being located at passive margins and,465

therefore, not being affected by more recent tectonics (e.g. Drummond and Collins,466

1986).467

Sippl (2016) and Kennett and Sippl (2018) imaged a series of Moho offsets468
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Figure 6: Simplified geological map of northwestern Australia and location of the three

seismic arrays used in this study (Alice Springs Array (ASAR), Warramunga Array (WRA)

and Pilbara Seismic Array (PSAR)). Blue dashed lines represent the boundary of the

West Australian Craton (WAC, light blue line) and the North Australian Craton (NAC,

dark blue line). PSAR and WRA are located on Archaean and Proterozoic basement

respectively, inside the cratons, while ASAR is situated at the southern boundary of the

NAC. Panels on the right show the station configuration of the arrays, with the same scale

bar shown for PSAR being applicable to all three maps. Geological structure based on

Blake and Kilgour (1998) and Raymond et al. (2018).

along a north-south profile in the NAC. One of these offsets is associated with the469

Redbank Shear Zone, which separates the Aileron Province and the location of470

ASAR from the Amadeus Basin, just south of the array (e.g Goleby et al., 1989;471

Korsch et al., 1998; Sippl, 2016). The profile used in Sippl (2016) and Kennett and472

Sippl (2018) is located roughly 50 km west of ASAR and shows an offset of up to 20473

km coinciding with ASAR latitude, even though they show constant Moho depths474

beneath the array. An east-west gravity anomaly has been found at the location of475
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this Moho offset (Sippl, 2016, Fig. 1) and attributed to denser lithosphere at the476

base of the crust caused by the uplift of the Aileron crustal block during the Alice477

Springs Orogeny 400–350 Ma ago (Goleby et al., 1989; Aitken, 2009; Aitken et al.,478

2009; Sippl, 2016). Another offset imaged by Sippl (2016) and Kennett and Sippl479

(2018), further north, shows a north-south decrease in Moho depth of about 10 km480

just south from WRA, which has been associated with a Proterozoic suture zone.481

Corbishley (1970) also found evidence of a layered and dipping structure below482

WRA. Gravimetric data do not show any anomalies here (Sippl, 2016), which has483

been attributed to a layer of sediments near the surface isostatically compensating484

the mass excess at depth.485

Several studies have addressed the thickness of the lithosphere beneath the486

Australian continent. Some suggest similarly deep interfaces across all Precam-487

brian cratonic regions in Australia (Ll ≈ 200 km) (e.g. Debayle and Kennett,488

2000). More recent studies use a lithosphere-asthenosphere transition zone (LAT),489

defined as a mechanical or thermal boundary layer related to changes in rheology,490

as opposed to a simple interface at the bottom of the lithosphere (e.g. Kennett and491

Sippl, 2018; Yoshizawa and Kennett, 2015). Specifically, Kennett and Sippl (2018)492

place the upper and lower bounds of the LAT at 140 and 170 km depth respec-493

tively for ASAR, and at 120 and 160 km for WRA, while Yoshizawa and Kennett494

(2015) place them at 100 and 200 km depth for PSAR. Some studies have also495

found evidence for mid-lithospheric discontinuities below both ASAR and WRA496

which have been interpreted as vertical variations in mantle composition, grain497

size or fabric, for example a low velocity melt cumulate layer (Ford et al., 2010)498

and as a former mantle detachment zone associated with the Alice Springs orogeny499

(Kennett and Sippl, 2018).500
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Table 4: Summary of the main results obtained from the EFM for all arrays:
intrinsic (Qi0) and diffusion (Qd0) quality factors values at 1 Hz, intrinsic qual-
ity factor frequency dependence coefficient (α), correlation length (a) and RMS
velocity fluctuations (ε).

Array Qi0 Qd0 α a (km) ε (%)
PSAR 2100± 200 500± 40 0.0 0.9± 0.1 2.9± 0.1
WRA 2100± 100 400± 20 0.0 1.1± 0.1 4.5± 0.1
ASAR 1000± 100 400± 40 0.2 0.9± 0.2 4.7± 0.2

5 RESULTS AND DISCUSSION501

5.1 EFM results502

We calculated the coda decay rate, a1, and its value at zero time, a0, for all503

frequency bands and arrays as stated in Section 2.1. We applied the linear least-504

squares fit of the squared stacked envelopes at the free surface (Fig. S4) to a time505

window starting tN s after the theoretical P wave arrival (tN being the one-way506

traveltime through the lithosphere), since the EFM is only applicable after the507

direct wave has left the scattering layer (Korn, 1990; Hock and Korn, 2000). The508

length of this time window varied from 42.5 to 48 s for all arrays and frequency509

bands, depending on differences in P wave velocities and arrival times. Table 4510

and Figure 7 summarise our EFM results for all arrays.511

A least-squares fit using Eq. 2 then allowed us to calculate the quality factors512

for diffusion and anelasticity at 1 Hz from a1. For all arrays, the coda decay rate for513

the lowest frequency band did not follow the trend defined by the other frequency514

bands. Including it in the least squares fit produced inconsistent results, and it515

was excluded from the analysis (Fig. S5). The intrinsic quality factor, Qi, takes516

similar, frequency independent (α = 0), values of ∼ 2000 for WRA and PSAR. For517

ASAR, our best fits to the coda decay rate (Eq. 2) correspond to α = 0.2 (Fig.518

S5) and Qi ∼ 1000. Diffusion quality factor values at 1 Hz are similar for ASAR519
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and WRA (∼ 400), and higher for PSAR (∼ 500). Since this quality factor does520

not depend on α (Eq. 16, Korn (1990)), this translates into Qdiff following the521

same trend for all arrays but being higher for PSAR than for WRA and ASAR.522
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Figure 7: Frequency dependence of the intrinsic (Qi), the diffusion (Qdiff ), scattering

(Qs) and combined (Qcomb) quality factors for all arrays.

Figure S6 shows measured Qs values, obtained from Eq. 5, together with the523

theoretical least-squares regression curves derived by Fang and Müller (1996) for524

the relationship between the structural parameters and Qs for an exponential ACF.525
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As explained on Section 2.1, these parameters represent a first approximation to526

the average spatial distribution and strength of the heterogeneity of a hypothetical527

single scattering layer beneath the arrays. Correlation length values are similar for528

the three arrays, varying from 0.92 – 1.1 km. Heterogeneities appear to be weaker529

beneath PSAR than ASAR or WRA, with ε jumping from ∼ 3.0% for PSAR to530

∼4.5% and ∼4.7% for WRA and ASAR respectively.531

Figure 7 shows the frequency dependence of the different quality factors ob-532

tained from the EFM. The total quality factor, Qcomb , and Qs follow a similar533

trend. They take the highest and lowest values for PSAR and ASAR respectively.534

For WRA and ASAR, their maximum value corresponds to the 0.5–1 and 0.75–1.5535

Hz bands respectively, and the minimum for the 1.5–3 Hz frequency band. The536

frequency dependence of Qs and Qcomb for the highest frequencies is similar for537

both arrays. This indicates that the dominating scale length of the heterogeneity538

is in the 2.6–5.3 km range for these arrays when we consider a single scattering539

layer. For PSAR, however, Qs decreases for frequencies below 1.5 Hz and then re-540

mains approximately constant, which could be indicative of different scale lengths541

of the heterogeneity being equally present in the structure. For this array, Qcomb542

increases slowly over the frequency range covered here.543

In general, diffusion is the strongest attenuation mechanism (lowest Q) at low544

frequencies, with scattering dominating at higher frequencies. For WRA, this545

transition happens at 0.75 Hz, while for ASAR and PSAR, the change takes place546

at 1.125 Hz. Anelasticity remains the weakest attenuation mechanism (highest Q)547

at low frequencies, up to 4.5 Hz for WRA and PSAR and 3.75 Hz for ASAR. Above548

that frequency, Qdiff becomes dominant. These results agree with the observations549

by Korn (1990), who obtained Qi > 1000 and Qdiff ∼ 300− 400 at 1 Hz for WRA,550

even if his results showed that Qi remained larger than Qdiff up to 10 Hz. Our551
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Qcomb results suggest that, even if Qs, Qi and Qdiff are lower at most frequencies552

for ASAR than for the other two arrays, total attenuation strength is similar553

for ASAR and WRA. These lower Qcomb values could be related to the location554

of these arrays on the NAC, younger in origin than the WAC (Section 4). The555

location of ASAR, on the southern edge of the NAC, in an area widely affected by556

the accretionary processes that took place during the assembly of the Australian557

continent, as well as major events like the Petermann and Alice Springs orogens558

(Section 4), could explain the lower values of the different quality factors obtained559

for this array. For PSAR, the generally high quality factors values we obtained560

could be related to the location of the array on a tectonically quiet Archaean561

craton (Section 4). Previous studies (e.g. Cormier, 1982; Korn, 1993; Sipkin and562

Revenaugh, 1994; Domı́nguez and Rebollar, 1997) have also found lower Q values563

in regions with quiet tectonic histories, an observation that matches our results564

from the EFM for all three arrays.565

5.2 EFMD results566

We used the 1-layer and 2-layer lithospheric models shown in Fig. 5 in our inversion567

of the data for all three arrays. Qi values necessary to calculate the synthetic568

envelopes from Eq. 7 are determined by the EFM. As with our synthetic tests,569

we ran three parallel Markov chains for each array and model type, with 1 million570

or 3 million iterations for models with 1 and 2 layers respectively. The burn-in571

phase, defined as described in section 2.2.2, was removed from all chains. Table 5572

summarises our results. To avoid repetition, we include here only the most relevant573

results for each array. Figures from the rest of our inversions can be found in the574

Supplementary material.575

Inversion of PSAR data with Model type I (single layer), revealed this model576
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produces very large amplitude codas that barely decay over time (Fig. S7). All577

chains were stable and converged within 14000 iterations, but the maximum log-578

likelihood reached during the inversion (< −106, panels a–c on Fig. S7), indicated579

fits to the data are very poor, which is also obvious from the comparison of the580

ensemble of synthetic envelopes with the data (panels g–n on Fig. S7). The poste-581

rior PDFs suggest a nearly homogeneous lithosphere, with ε ∼ 0% and a > 20 km.582

This is likely due to the large thickness of the layer (200 km) preventing diffusion583

out of it and, therefore, energy levels in the heterogeneous layer remaining high at584

all times, regardless of the magnitude of the scattering parameters. We also tested585

model type I on ASAR data, since coda levels for this array are higher. These586

results are shown on Fig. S8. Despite the higher coda amplitudes, model type I587

fails to fit our data for this array, with the maximum loglikelihood reached being588

on the order of −10000. ASAR coda amplitudes are similar to WRA, indicating589

similar behaviour. Therefore, this model was not tested for WRA.590

Model type II (two layer) inversions for all three arrays showed much better591

fits for frequency bands D-H (Table 1) than for A-C (example for PSAR in Fig.592

S9). However, loglikelihood values are still very low (< −4× 105), Table 5), which593

indicates poor fits to the data and, therefore, unreliable parameter estimations,594

even if there is a substantial improvement with respect to model type I. Our EFM595

results show scattering only becomes the dominant attenuation mechanism above596

1.5 Hz for PSAR (Fig. 7). This, together with coda amplitudes shown on panels597

j–q in Fig. S9 being barely above the noise level in the time window of interest598

for the lowest frequency bands, suggests these codas are affected by large-scale599

heterogeneities and might not be composed only of energy scattered at small-scale600

structure. Therefore, the EFMD may not be able to fit our coda envelopes for601

frequencies below this threshold. To test this, we ran our EFMD inversion code602
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Table 5: Summary of our EFMD results for all arrays and model types.

Array
Model Frequency Layer Correlation length (a) RMS velocity fluctuations (ε) Maximum
type bands number 5–95 PR (km) AR (%) 5–95 PR (%) AR (%) L

PSAR

I A-H 1 23 – 32 48 < 0.01 47 < −14× 106

II A-H
1 0.5 – 25

75
< 0.01

47 < −450000
2 0.5 – 32 < 0.01

3
II D-H

1 0.5 – 0.8
59

2.3 – 2.5
44 −7.1

comp. 2 4 – 32 0.1 – 1.8

ASAR
I A-H 1 2 – 30 93 0.01 – 0.07 44 −10500

II D-H
1 0.2 – 1.4

59
2.4 – 3.0

50 −2.2
2 3 – 32 0.1 – 3.7

WRA II D-H
1 0.7 – 1.5

60
3.1 – 3.9

53 −0.7
2 3 – 32 0.2 – 5.0

for frequency bands D to H (Table 1) alone. By comparing our results for PSAR603

in Fig. S9 and Fig. 8, we observe considerable improvement in the fits to the604

data, also evidenced by much higher loglikelihood values (< −10). Given these605

new observations, we discard frequency bands A to C (central frequencies below606

1.5 Hz, Table 1) in future inversions of the data for all arrays.607

Figures 8, 9 and 10 summarise our results for all three arrays and model type608

II. All Markov chains converged within 10000, 7000 and 4000 iterations for PSAR,609

ASAR and WRA, respectively. The scattering structure beneath all three arrays610

shows different amounts of heterogeneity in the crust and a relatively homogeneous611

lithospheric mantle. The posterior PDFs for both parameters in the top layer in612

all cases are roughly Gaussian and narrow (Table 5). Maxima for the correlation613

length PDFs for PSAR, ASAR and WRA are at 0.6, 0.7 and 1 km, while RMS614

velocity fluctuations posteriors peak at 2.4%, 2.7% and 3.6% respectively. PDFs615

for layer 2, on the other hand, show no clear maxima and also have similar shapes616

for all arrays. For PSAR, ε only takes values below ∼ 3%, while for WRA and617

ASAR, the PDF extends up to ∼8 % and ∼6 % respectively. In all cases, most618

of the accepted models have ε < 1%. The correlation length PDF, on the other619

hand, extends throughout the entire parameter space. For PSAR and WRA, large620

values of a (> 5 km) are favoured, while small correlation lengths (< 1 km) seem621
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to work better for ASAR. Loglikelihood values are high (> −10) for all arrays,622

which suggests fits to the data are generally good. The shape of the PDFs for623

the bottom layer makes our solutions non-unique and highlights a complicated624

trade off between the scattering parameters. These results strongly resemble the625

ones we obtained from our synthetic test of model 3 (Table 2), in which our626

Bayesian inference algorithm successfully recovered the input parameter values627

for the strongly heterogeneous layer while pointing out similar trade-offs between628

the two parameters and non-unique solutions for the more homogeneous layer.629

These results suggest the lithospheric mantle beneath all three arrays is much630

more homogeneous than the crust above it, where most of the scattering and631

attenuation takes place.632

These results agree with observations from previous studies. Kennett (2015)633

studied P-wave reflectivity in the lithosphere and asthenosphere in Australia.634

Their results point to strong lithospheric heterogeneity being present beneath sta-635

tions in the Proterozoic NAC and they suggest correlation lengths of at most a636

few kilometres and ∼ 2% velocity fluctuations in the crust. For the lithospheric637

mantle, they propose much larger correlation lengths (10-20 km) and ε < 1%.638

Kennett and Furumura (2016) and Kennett et al. (2017) also addressed the pres-639

ence and interaction of multi-scale lithospheric heterogeneity in the Australian640

continent. In their simulations, they combined large scale heterogeneities with641

stochastic media and fine scale structure. Their results indicate a wide range of642

heterogeneity spatial scales are present and interact within the lithosphere. Their643

models contain four different layers for the fine scale structure, two in the crust644

and two in the lithospheric mantle, and different horizontal (aH) and vertical (aV )645

correlation lengths. Their scattering parameters suggest a mildly heterogeneous646

asthenospheric mantle (aH = 10 km, aV = 10 km, ε = 0.5%) and an increase in647
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the strength of the heterogeneity in the lithosphere-asthenosphere transition zone648

(aH = 5 km, aV = 1 km, ε = 1 %). The crust is generally more heterogeneous in649

these models, with aH = 2.6 km, aV = 0.4 km for both crustal layers and RMS650

velocity fluctuations of 0.5% and 1.5% for the upper and lower crust respectively.651

At resolvable scales, these values are consistent with our results from the EFMD652

(Table 5).653

5.3 Limitations and assumptions654

A possible source of error in our inversion is the prescribed thickness of the layers655

in our models. The EFMD is sensitive to changes in the bottom depth of the656

different layers, especially for the shallowest layer, as this affects the diffusion657

out of them. For our model type II, we used a priori information on Moho and658

lithosphere-asthenosphere boundary (LAB) depths. As discussed in Section 4,659

however, there is some uncertainty in reported depths, especially for the LAB.660

Our models consider the lithosphere to extend down to 200 km depth for all three661

arrays, but tests of the EFMD with shallower LABs did not produce major changes662

in our results.663

Previous studies have shown that the strongest inhomogeneities within our664

planet are found in the lithosphere, even if deeper sections can also be heteroge-665

neous (e.g. Shearer and Earle, 2004; Shearer, 2007; Rost et al., 2015). In this study,666

we focused on the characterization of small-scale lithospheric heterogeneities be-667

neath ASAR, PSAR and WRA, with our models extending down to 200 km depth668

in all cases. We interpreted our results under the assumption that the coda en-669

ergy was generated by lithospheric inhomogeneities, even if we are aware that we670

cannot rule out energy contributions from deeper, weaker scatterers. It is unlikely671

that these structures are the dominant source of coda energy throughout the time672
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window used in our analysis and their effect on our results is likely small.673

Other limitations of our approach are the assumptions for the determination674

of the different quality factors in the EFM and the fact that neither the EFM nor675

the EFMD take into account phase conversions and reflections at interfaces other676

than the free surface. Equation 15b from Korn (1990), which we use in this study,677

is based on the assumption that Qs and Qdiff are of the same order of magnitude,678

even if that is not necessarily always the case. The intrinsic quality factor (Qi)679

value used in the EFMD was determined by the EFM, with a limitation to a single680

scattering layer and a poorly constrained frequency dependence of Qi, since α681

could not be fully inverted for in the EFM (Section 2.1). Therefore, all layers in682

our EFMD models have the same Qi and frequency dependence as obtained in the683

EFM. The heterogeneity anisotropy observed by Kennett and Furumura (2016)684

and Kennett et al. (2017) could be included in future approaches of Bayesian685

inversion for heterogeneity structure but given the range of acceptable models686

we find and the trade-offs inherent in inverting for scattering parameters we have687

demonstrated, we are unsure if anisotropy in scattering could be well resolved with688

these kinds of data.689
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Figure 8: Results from Model type II and PSAR using only the five highest frequency

bands from Table 1.
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Figure 9: As Fig. 8 but for ASAR.
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Figure 10: As Fig. 8 but for WRA.
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6 CONCLUSIONS690

For three Australian seismic arrays, we applied the single layer modified Energy691

Flux Model (EFM) and depth dependent Energy Flux Model (EFMD) to a large692

dataset which includes events from a wide range of magnitudes, distances and693

azimuths. This ensures we are thoroughly sampling the structure of the litho-694

sphere beneath the arrays and reduces azimuthal and lateral bias. Our EFM695

results highlight similarities and differences in the behaviour of the quality factors696

(Qi,Qdiff , Qs, Qcomb) for the three arrays studied here and, therefore, the atten-697

uation structure beneath them. Generally, intrinsic and diffusion quality factors698

are lower at all frequencies for ASAR than for the other two arrays, which would699

indicate that attenuation caused by these two mechanisms would be strongest for700

this array. However, the scattering and total quality factors take similar values for701

ASAR and WRA, making their heterogeneity and overall attenuation structure702

comparable and different to PSAR. These results are consistent with the tectonic703

histories and settings of the areas the arrays are located on. WRA and ASAR lie704

on the proterozoic North Australian Craton (NAC), but while WRA is situated705

near its center, ASAR is on its southern border, a margin with more complex and706

recent tectonic history than the interior of the craton, which correlates with the707

generally lower quality factor values we observe for ASAR. The EFMD confirms708

some of these similarities and differences. Our results suggest the crust is more709

heterogeneous than the lithospheric mantle for all arrays, which could be related710

to the cratonic nature of the lithosphere in these areas. Correlation lengths in711

the crust vary from ∼0.2–1.5 km and RMS velocity fluctuations take values in the712

2–4 % range. The scattering structure of the lithospheric mantle, on the other713

hand, is more complex. Solutions for this layer are not unique, with both low714

(< 2 km) and high (> 5 km) correlation length values being equally possible. Low715
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velocity fluctuation values are favoured in the inversion results for all arrays, but716

the posterior PDFs for ASAR and WRA extend up to ∼6% and ∼7% respectively717

and only to ∼ 3% for PSAR, thus supporting our hypothesis that the similarities718

and differences in the heterogeneity structure beneath these arrays are caused by719

their different locations on the cratons and the different tectonic histories of these720

areas.721

These results highlight the suitability of Bayesian inversion approaches for the722

characterization of lithospheric small-scale structure. Our synthetic tests show723

that the combination of the EFMD and our Bayesian inference algorithm can ef-724

fectively recover heterogeneity parameters for 1- and 2-layer models. Our approach725

provides detailed information about the parameter space and the trade offs and726

uncertainties in the determination of the structural parameters. The study of727

the posterior PDFs also allows us to determine whether a single set of scattering728

parameters can successfully explain our data or whether solutions are not unique.729

Our study shows that energy flux models can be used for seismic arrays or730

groups of stations (PSAR, WRA) and single seismic stations (like the single avail-731

able 3-component station at ASAR). The methods rely on teleseismic data, which732

makes them suitable for regions with limited local and regional seismicity, such as733

our study areas in northern and western Australia. The strength of the hetero-734

geneity is not constrained, which makes this technique applicable to strong and735

weak scattering regimes and apt to the study of small-scale heterogeneity on Earth736

and other planets. Finally, the computational efficiency of the EFMD means it737

can be combined with Bayesian inference algorithms to explore wide and complex738

parameter spaces. Overall, our study shows that the combination of the EFM and739

Bayesian EFMD is an effective tool to quantify heterogeneities in the lithosphere740

and can contribute to our understanding of heterogeneity distribution in the Earth.741
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